Emerging Methods and Measures for Detecting Stress and Deception: Thermal Imaging

Dean Pollina

Department of Defense Polygraph Institute,
Ft. Jackson, South Carolina
Emerging Methods and Measures for Detecting Stress and Deception: Thermal Imaging

Major Points

- **Description** of thermography
- Data processing and algorithm development **issues** to be resolved
- Mock crime studies – Some **findings**
- Theoretical **discussion** and conclusions

Description of Thermography

Issues to be Resolved: Image Analysis

- Which data transformations and Filters should we use?
- How should head movement be tracked?
- How to determine rate of change (blood flow) in visual images?
- How best to standardize measurement locations, sampling rates, radiation detected?

Issues to be Resolved: “Deception” Algorithms

Some Problems:

1. Individual variability and subpopulations
 - Differences in physiology
 - No standardized test formats
2. Ill-defined psychological construct
3. Little understanding of the physiological process
 - Can’t develop theoretical framework
 - Can’t constrain the infinite number of transformations possible
4. Either Ground Truth Unknown or Little Jeopardy

Issues to be Resolved: Methodological Problems

1. Comparison Question Test Format (Pavlidis et al., 2002; Pollina & Ryan, 2002)
 - Head movement not adequately tracked/controlled
 - Stimulus presentation times variable
 - Algorithm sensitive to study conditions
2. Study 2. Concealed Information Test Format (Pollina et al., submitted)
 - Camera Sensitivity (.10 C) not adequate
 - Head movement not adequately tracked/controlled

Issues to be Resolved: Test Question Sets

New technology will have to be tested
- Mock Crime / Field Study
- Ground Truth
- Question Sets Used
Issues to be Resolved: What is the psychophysiological process?

Periorbital Region 1s after the presentation of a crime-relevant polygraph question.

Two broad categories

Core temperature (T_C).

Regulated temperature (T_{REG}).

Issues to be Resolved: Head Movement

Algorithm Types:
- General Purpose
- Specific Purpose

Head Movement:
1. In plane vertical
2. In plane horizontal
3. In plane rotational
4. Out of plane

Machine Vision:
Pattern Match Template
Early Thermal Imaging Studies: Overview

- Mock Crime: Murder
- 32 Participants, U.S. Army basic trainees
- Simultaneous polygraph and thermal imaging of the face

Grand Averages: Skin Temperature

- Ear
- Mouth
- Scalp
- Neck
- Nose
- Eye

Deceptive
Nondeceptive
Regions Sampled

Mouth
1. Buccinator.
2. Depressor labii inferioris.
3. Levator labii superioris.
4. Mentalis
5. Orbicularis oris.
6. Depressor anguli oris.
7. Zygomaticus major and minor.

Ear
8. Temporoparietalis.

Scalp

Neck

Eye
11. Corrugator supercilii
12. Orbicularis oculi.

Nose
13. Procerus.

Mock Crime Study, ZCT: Grand Average Frame Means: Eye

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Frame Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deceptive</td>
<td>Nondeceptive</td>
</tr>
<tr>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

113
ZCT Data: Combining Polygraph and SST

Area Under the ROC Curve Derived from Binary Logistic Regression

<table>
<thead>
<tr>
<th>Regression Analysis</th>
<th>Predictor Variables</th>
<th>R² (Cox & Snell)</th>
<th>ROC Area</th>
<th>Sig.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygraph Measures</td>
<td>BV, EDA, AR, TR</td>
<td>.41</td>
<td>.88</td>
<td>.002</td>
</tr>
<tr>
<td>SST Amplitude Measures</td>
<td>SST: Nose, Mouth, Eye, Scap, Neck, Ear</td>
<td>.09</td>
<td>.70</td>
<td>.09</td>
</tr>
<tr>
<td>Polygraph and SST Amplitude: Nose</td>
<td>BV, EDA, AR, TR, SST: Nose</td>
<td>.49</td>
<td>.90</td>
<td>.001</td>
</tr>
<tr>
<td>Polygraph and SST Amplitude: Eye</td>
<td>BV, EDA, AR, TR, Eye</td>
<td>.46</td>
<td>.90</td>
<td>.001</td>
</tr>
<tr>
<td>Polygraph and SST Amplitude: Eye, Nose</td>
<td>BV, EDA, AR, TR, SST: Eye, Nose</td>
<td>.52</td>
<td>.92</td>
<td>.001</td>
</tr>
</tbody>
</table>

*Null hypothesis: true area = .50

Irrelevant Items

CIT Results

Deceptive Group. Temperature change to critical item prior to verbal response.

Nondeceptive Group. Gradual increase in temperature throughout the response interval. Similar for critical and non-critical items.
Conclusions

- Thermal imaging shows some promise, especially when combined with traditional polygraph measures.
- Questions such as optimal measurement sites, sampling rates, transformation algorithms, and combination (with polygraph) strategies need to be developed and tested.
- The long range goal is to use these measures to determine the specific emotions experienced by examinees on-line, and to use this feedback as an aid in credibility assessment.