
The Journal of Credibility Assessment and Witness Psychology

2006, Vol. 7, No. 2, pp. 127-134

Published by Boise State University

Radar Technology For Acquiring Biological Signals

Gene Greneker

RADAR Flashlight, LLC, Powder Springs, Georgia

Copyright 2006 Boise State University and the Authors. Permission for non-profit electronic dissemination of this article is granted. Reproduction in hardcopy/print format for educational purposes or by non-profit organizations such as libraries and schools is permitted. For all other uses of this article, prior advance written permission is required. Send inquiries by hardcopy to: Charles R. Honts, Ph. D., Editor, *The Journal of Credibility Assessment and Witness Psychology*, Department of Psychology, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA.

Radar Technology For Acquiring Biological Signals

The Ability of Radar to Sense Biological Signals Background of Gene Greneker

- Principal Research Scientist, Georgia Tech Research Institute 33 years
 - Radar Vital Signs Monitor (heart and respiration) Project Director
 - RADAR Flashlight Project Director
 - Through the wall detection of the human respiration radar signature
 - o DARPA radar gait analysis program Project Director
 - Identification of a subject by radar sensed gait characteristics
- Retired From GTRI on 12-01-03 and started RADAR Flashlight, LLC.
- Working 49% part-time at Georgia Tech Research Institute
- Working 51% time for RADAR Flashlight, LLC on DARPA SBIR program to develop next generation RADAR Flashlight

The Ability of Radar to Sense Biological Signals

- Types of biological signals that radar can sense at present
 - Heart and respiration (vital signs)
 - Body tremor and very slight movement to maintain balance
 - Gait signature to allow identification of a subject
 - Heart signature (ballistocardiogram) of person hidden in vehicle
- Other attributes of radar sensing of biological signals
 - Detection of slight motion of the human body induced by a biological process
 - Detection of vital signs through clothes and heavy outer wear

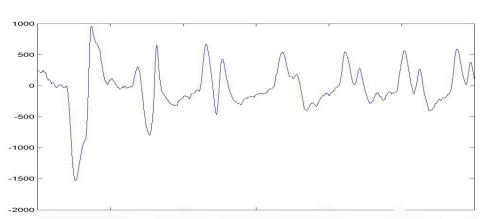
The Ability of Radar to Sense Biological Signals Applications of Radar Vital Signs Monitoring

- Medical
 - Tele-medicine no connection required for heart and respiration monitoring
 - Heart disease screening
- Law Enforcement and Corrections
- Finding persons behind walls and in closed areas
- Suicide watch monitoring
- o Finding persons in shipping containers and border crossing inspection
- Deception detection (heart and respiration channels of polygraph)
- Military
 - o Clearing buildings in urban warfare scenario (through the wall human sensing)
 - Battlefield casualty assessment (dead or alive)
 - Vital signs monitoring through uniforms and chem/bio suits

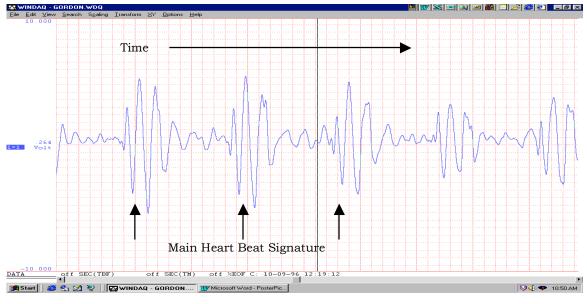
History of Georgia Tech Research Institute's Radar Vital Sign Monitoring Research Program

<u>RADAR Vital Signs Monitor developed for military applications</u>

0

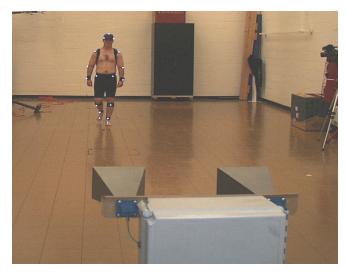

- Remote evaluation of battlefield casualties from 100 meters away
 - Monitoring of vital signs (heart and respiration rate) of injured person
 - Sealed in <u>contaminated</u> chemical or biological suit
 - Monitor of subject without opening suit and contaminating subject
- <u>RADAR Vital Signs Monitor developed for 1996 Olympic application</u>
 - Monitoring of archer and rifle competitor's vital signs at a distance of 30 feet
 - Do rifle competitors shoot between heartbeats?
 - Do archery competitors shoot between heartbeats?

GTRI Olympic Athlete Monitoring System Olympic Athlete Monitor – Front View


GTRI Olympic Athlete Monitoring System Radar Vital Sign Monitor - Rear View

GTRI Olympic Athlete Monitoring System Respiration Signature at 30 feet

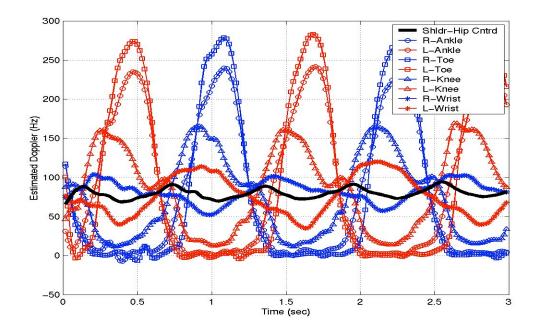
GTRI Olympic Athlete Monitoring System Radar Cardiogram Taken at 15 Feet



Thorax Aspect

Range To Subject = 15 feet

GTRI Human Gait Program Radar Measured Gait


- Radar Measured Gait Analysis
 - Investigation of radar sensed gait to identify subjects after they have been enrolled in a 'gait' data base

- Gait research program performed for DARPA
 - Registered almost 100 subjects by having them walk toward radar
 - \circ ~ Took gait data 6 months later on same subjects used to build data base
 - \circ ~ Developed recognition algorithm to compare 'probe' to 'gallery'
 - \circ $\,$ Had 80% and higher recognition rate with low false alarm rate

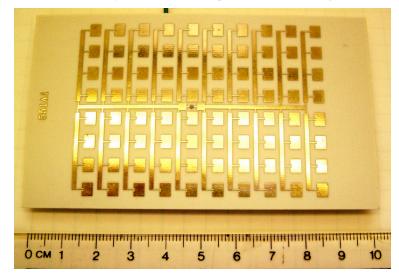
GTRI Human Gait Program Processed Human Gait Signal

Doppler signature produced by body members (walking subject)

Radar Flashlight, LLC Clip-on Monitor Heart and Respiration Rate Sensed Through Clothes

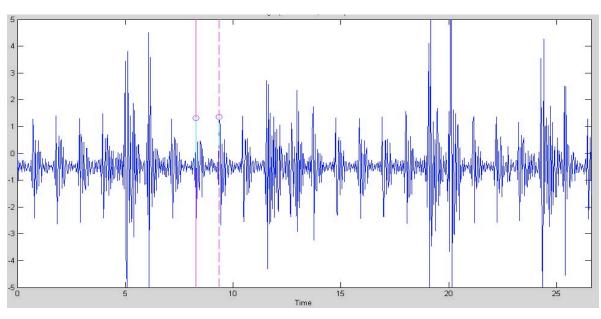
- RADAR Flashlight, LLC is commercializing radar vital signs instrumentation
 - Clip-on radar heart and respiration rate monitor is first product
 - o Stand-off long range non-contact radar vital signs monitoring system also planned as product

Radar Flashlight, LLC Clip-on Monitor Clip-on Sensor Specifications

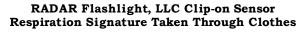

- Sensor unit is clipped on uniform over thorax area
- Battery operation
- Up to 10 patients monitored simultaneously
- Patient monitoring performed on hand held unit
- Sensors data sent to hand held unit via radio link
- Distance Between clip-on sensor and hand held monitor = 50 feet
- Loss of signal alarm
 - Radio link
 - Patient vital signs

Radar Flashlight, LLC Clip-on Monitor Heart and Respiration Rate Sensed Through Clothes

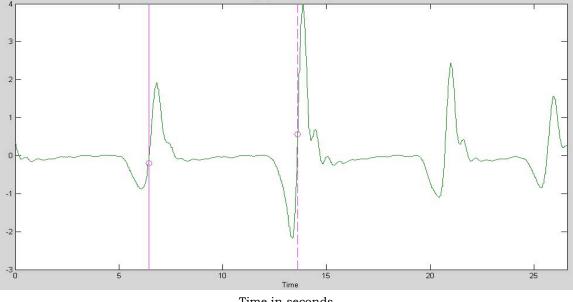
- Applications for RADAR Flashlight, LLC Clip-on System
 - Small military units behind operating behind lines with wounded
 - Wounded stays in body armor and battle dress while system monitors
 - Victim can be moved on short notice without usual wired system mobility problems
 - Civilian heart and respiration rate monitoring applications
 - No removal of clothes required to monitor
 - Next generation system may be very inexpensive (disposable)


Radar Flashlight, LLC Clip-on Monitor Radar System

Radar System Used in Clip-on Sensor Package


Sensor weight is 2 ounces

Radar Flashlight, LLC Clip-on Monitor Heart Signature Taken Through Clothes



Clip-on Sensor's Heart Signal Channel Output

Time in seconds

Clip-on Sensor's Respiration Signal Channel Output

Time in seconds

Radar Technology For Acquiring Biological Signals What Radar <u>Can't</u> Do (Yet)

- Monitor low level biological electrical signals in body
 - o EKG
 - o EEG
- Recover heart and respiration signals from all parts of the body
 - Thorax front aspect best to monitor
 - Heart and respiration signal can be picked up from back area
 - If vessel or artery comes close to surface heart signal detectable

Radar Technology For Acquiring Biological Signals Current Radar Vital Signs Challenges

- Any subject motion currently causes artifacts in signal from stand-off radar system
 - Moving body motion induces signal larger than small heart and respiration signal
 - Techniques to isolate heart and respiration signature from small body motion signature needs to be developed
 - Covert deception analysis on basis of heart and respiration rate at checkpoint possible if subject body motion artifact problem can be solved
- Motion artifact not same magnitude problem in clip-on system
- Recovery of radar developed heart and respiration signal from walking subject topic for future research
 - Data is in the Doppler sidebands but only as "micro-Doppler" components
 - Micro-Doppler recovery techniques should be subject of future research efforts

Radar Technology For Acquiring Biological Signals Future Research Topics in the Area of Radar Based Deception Detection

- Heart and respiration signal recovery while subject is being questioned at Customs or Immigration counter
 - Motion artifact suppression research
 - Method to determine deception from only 2 channels of information
- Detection and recovery of heart and respiration signal when subject of interest is walking
- Techniques to isolate heart and respiration rates of subject moving in crowd

Radar Technology For Acquiring Biological Signals Representative References

- Greneker, E. F., "Use of the Envelope Detection Method to Detect Micro-Doppler Signals," Proceedings of the SPIE Aerosense Conference, Radar Sensor Technology XI, Orlando, FL, April, 2003, with V. B. Sylvester
- Greneker, E. F., "A Continuous-Wave CW Radar for Gait Analysis," 35th IEEE Asilomar Conference on Signals, Systems and Computers, vol. 1, 2001, pp 834-838, with Geisheimer, J. L., Marshall, W. S.
- Greneker, E. F., "A Radar Vital Signs Monitor," Final Technical Report, National Medical Technology Testbed, Inc. Prime Contract DAMD17-97-2-7016, November 1999, with Jon Geisheimer and Dinal Andreason
- 4. Greneker, E. F., "Radar Sensing of Heartbeat and Respiration at a Distance with Applications of the Technology," <u>Proceedings of IEE RADAR-97</u>, Edinburgh, Scotland, October 1997, pp. 150-153
- Greneker, E. F., "Non-Contact Heartbeat Signature Measurement for Possible Personnel Biometric Identification," <u>Proceedings of the 13th Annual ADPA Symposium and Exhibition on Security</u> <u>Technology</u>, Virginia Beach, VA, June 1997

Published: 1 June 2006