The Journal of Credibility Assessment and Witness Psychology

2006, Vol. 7, No. 2, pp. 148-163

Published by Boise State University

Eye Movement-Based Assessment of Concealed Knowledge

Frank M. Marchak

Veridical Research and Design Corporation, Bozeman, Montana

Copyright 2006 Boise State University and the Authors. Permission for non-profit electronic dissemination of this article is granted. Reproduction in hardcopy/print format for educational purposes or by non-profit organizations such as libraries and schools is permitted. For all other uses of this article, prior advance written permission is required. Send inquiries by hardcopy to: Charles R. Honts, Ph. D., Editor, *The Journal of Credibility Assessment and Witness Psychology*, Department of Psychology, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA.

Eye Movement-Based Assessment of Concealed Knowledge

Theoretical Background Traditional Deception Detection

 Polygraphy hypothesizes that individuals in deceptive situations experience an emotional response that causes arousal of the autonomic nervous system (ANS)

- Increase in arousal is detected through measurement of change in physiological functions
 - \circ Respiration
 - Blood pressure
 - Heart rate
 - Skin conductance

Theoretical Background Current Concept

• Change in the responses of cognitive and perceptual processes can be measured and employed in a similar manner

- Previous exposure to materials can be revealed by changes in subsequent cognitive processing
- Indirect measures of performance, such as speed and accuracy, show an increased efficacy in the processing of previously presented materials

Theoretical Background Measures of Memory

- Direct
 - Require reference to target event in personal history
 - Free Recall
 - Cued Recall
 - Recognition
- Indirect
 - Require reference only to task at hand
 - Speed
 - Accuracy

Measures of Memory Memorize this List

alligator	hammer
apple	house
arrow	lemon
baby	microscope
bird	ocean
book	pencil
butterfly	rock
computer	shoes
corn	table
fish	window

Measures of Memory – Direct Free Recall

• Recall all of the words that you remember

Measures of Memory – Direct Cued Recall

• Recall all of the words that were animals

 _
 _
 _
 _

Measures of Memory – Direct Recognition

• Which of these words were on the original list?

alligator	hammer
apple	key
banana	lemon
bag	microscope
bird	ocean
book	penguin
butterfly	radio
computer	shoes
corner	table
floor	wheel

Measures of Memory – Indirect Word Fragment Completion

all_ga_ _r ap_l_ a _r_w m_ cr_ _ _ _pe b_ _ _er_ _ _ h_ _ _ er pe_ _ _in

Measures of Memory – Indirect Word Stem Completion

- all_____ ap____ ar____ mic_____ but_____ com_____ ham____
- pen _ _ _ _

Measures of Memory – Indirect Perceptual Identification: Words

alligator apple banana bag bird book butterfly computer corner

Measures of Memory – Indirect Perceptual Identification: Images

Snodgrass & Feena, 1990

Theoretical Background Repetition Priming

- Prior exposure to stimuli produces:
 - Enhancement in performance
 - Changes in how stimuli are processed
 - Changes in eye movement patterns can serve as an indirect measure of memory and effectively indicate concealed knowledge
 - Developed by Neal Cohen at the University of Illinois –Urbana/Champaign (UIUC)

Theoretical Background Eye Movement-Based Memory Effect*

- Previously seen faces are viewed differently from novel faces
 - Fewer eye fixations
 - Fewer regions sampled
 - Less statistical constraint in sampling

* Althoff, R. R. and Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. *Journal of Experimental Psychology: Learning, Memory and Cognition, 25(4),* 997-1010.

Theoretical Background Data Analysis

- Variables calculated from eye movements to each face image
 - Number of fixations
 - o Number of regions sampled
 - First return fixation
 - Proportion of fixations to left of face
 - First-order Markov measures
 - Second-order Markov measures
- Linear Discriminant Analysis performed on variables to classify face images as familiar and unfamiliar

Theoretical Background UIUC Experiment Results

Grand Mean = 88.1%

EMMA Project Background

- US Government sponsor took delivery of a remote eye tracking system from the University of Illinois after six years of external research
- Internal research team formed with VRADC and personnel from Sponsor's organization to transition system from laboratory to field environment
- Effort named Project EMMA (Eye Movement-based Memory Assessment)

VRADC TRACKER

- Turnkey Remote Assessment of Concealed Knowledge using Eye-movement Recording (TRACKER)
- Portable, easy-to-use stimulus preparation, eye tracking and analysis system
- Additional stimulus types –objects and scenes
- Creation and validation of new administration protocols
- Expansion and refinement of analysis techniques
 - Fast Adaptive Mean Shift Clustering
 - o Bagging Quadratic Discriminant Analysis
 - o Bootstrapping

Methodology

Eye Movement-based Assessment First Generation Eye Tracking

Buswell, 1935

Apparatus Used for Photographing Eye Movements, Front View

Eye Movement-based Assessment Later Generation Eye Tracking

ISCAN, 1998

Eye Movement-based Assessment Current Generation Eye Tracking

SMI System Configuration

Tobii System Configuration

Eye Movement-based Assessment Methodology

Integrated User Interface

Analyze Test

Conduct Test

SMI

Tobii

Protocols

Group Membership

Determine prior knowledge of group membership

Familiar

Unfamiliar

Sample Accuracy – Group Membership Protocol Familiar/Unfamiliar

Stimulus	True Positive Rate	False Positive Rate
Faces	0.80	0.20
Objects	0.82	0.17
Scenes	0.81	0.14

Protocols Specific Individuals

• Determine whether prior knowledge exists for a specific individual

Familiar

Protocols **Object Knowledge**

Differentiate seen objects, handled objects, and unseen objects •

Protocols Scene Knowledge

• Determine prior knowledge for scene content through addition, deletion, or feature change

Original

Manipulated

Applications & Current Research

Current Applications

Concealed Information

Source Verification

Eyewitness ID

Suspect Questioning

Combatants

Current Research Focused Screening

- Combine eye movement data with electrodermal, pupil diameter and reaction time data
- Develop and validate protocols

Current Research Integrated Biometric Identfication

- Prototype Software System
- Supports enrollment & verification

Curent Research Determining Effect Boundaries

- Stimulus Differences
 - Photo types 0
 - Feature differences 0

Participant Differences Cultural 0

- Analysis Methods
- - Classification techniques 0 0
 - Eye movement variables

Eye Movement-based Assessment Summary

- Eye Movement-Based Assessment provides an effective, non-invasive tool to determine prior knowledge
- Supports use of faces, objects and scenes as stimuli
- Application to a wide range of verification situations
 - Source verification 0
 - Witness corroboration 0
 - Perpetrator identification 0
 - Detection of concealed information 0

Published: 1 June 2006