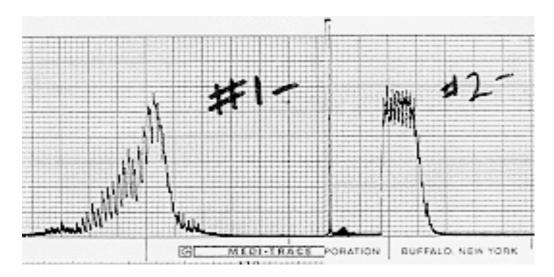

The Journal of Credibility Assessment and Witness Psychology

2006, Vol. 7, No. 2, pp. 99-107

Published by Boise State University

Evaluating Voice-Based Measures for Detecting Deception

Mitchell S. Sommers


Department of Psychology, Washington University, St. Louis, Missouri

Copyright 2006 Boise State University and the Authors. Permission for non-profit electronic dissemination of this article is granted. Reproduction in hardcopy/print format for educational purposes or by non-profit organizations such as libraries and schools is permitted. For all other uses of this article, prior advance written permission is required. Send inquiries by hardcopy to: Charles R. Honts, Ph. D., Editor, *The Journal of Credibility Assessment and Witness Psychology*, Department of Psychology, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA.

Evaluating Voice-Based Measures for Detecting Deception

Voice Stress Analysis

- Less invasive alternative to the polygraph
- Some potential applications
 - Airport security; phone-based interviews
- Most analyze 8-14 Hz frequency content of vocal signals; 'microtremors'

Product lineage for voice-based credibility assessment

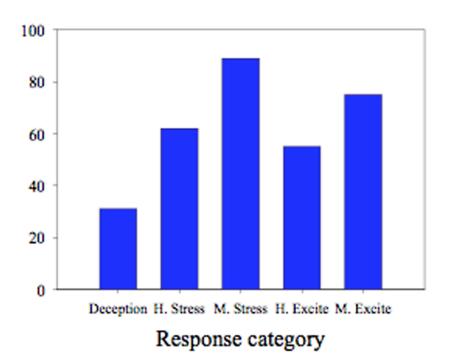
- Psychological Stress evaluator (PSE) 1970
- The Diogenes
- Computerized voice stress analyzer (CVSA)
- VSA-1000, VSA-15
- Vericator
 - Multi-layered voice analysis
 - o Truster Pro
- Xandi

Selected references on voice stress analysis in credibility assessment

Author	Device	Better than chance detection of deception
Kubis (1973)	NA	NO
Suzuki et al. (1973)	NA	NO
Horvath (1978)	PSE	NO
Lynch & Henry (1979)	PSE	NO
Brenner et al. (1979)	PSE	Marginal
Timm (1983)	PSE	NO
Hollien et al. (1987)	Several	NO
Cestaro (1995)	CVSA	NO
Janniro & Cestaro (1996)	CVSA	NO
Meyerhoff et al.	CVSA	NO

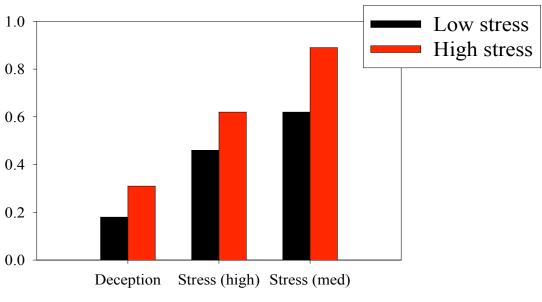
Vericator

- A new product introduced in late 1990s
- Analyzes 11 parameters of vocal signal
 - Specific parameters and algorithm for combining are proprietary
- Product lineage
 - o TrusterPro[™] by Trustech (1998)
 - o Vericator™ by Integritek Systems (2000)
 - o TiPi™ by Nemesysco (2003)
- Costs
 - o Approximately \$10,000 for full device
 - o Approximately \$1,500 for training

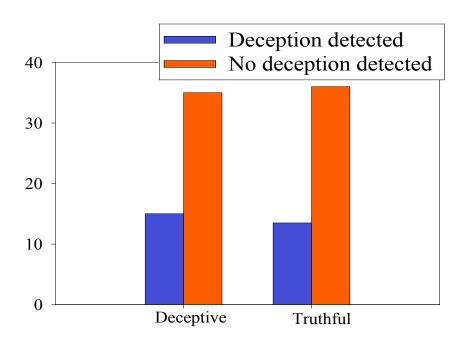

Project objectives

- Develop methodology for assessing reliability and validity of vericator
- Obtain data assessing 3 primary test attributes
 - o Reliability: Test-retest
 - o Sensitivity: Percentage deception detected
 - Specificity: Percentage of non-deception excluded
- Obtain data assessing relationship between overall stress levels and validity of vericator
- Compare detection rates induced by deception and other types of stress

High stress condition


- Participants
 - \circ N = 30
 - o All native speakers
- Methods
 - o Participant waits with confederate for "speech perception" test
 - o Confederate offers to split money "found" in a box
 - o Participant first asked series of calibration questions
 - "What is your major"
 - o Participant questioned about events as might affect speech perception performance
 - "Did anything happen prior to the speech perception test that might have affected your performance?"

High stress detection rates for critical questions*


Snsitivity = .31

Low vs. high stress condition

Response category

<u>Vericator specificity = .73</u>

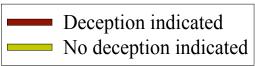
Participant's action

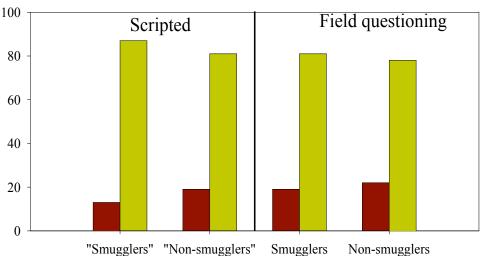
DoDPI mock smuggling

- Ability of Vericator to detect smugglers at a mock security checkpoint
- More naturalistic settings
- Procedure
 - o Testing took place at Strom Thurmond Federal Building & U.S. District Court complex (Columbia, SC)
 - Participants attempt to "smuggle" evidence for Federal trial through security checkpoint

Procedure continued

- All participants asked to go through security checkpoint
- When get to checkpoint participants are questioned by senior customs inspector
- Told that microphones are for recording responses

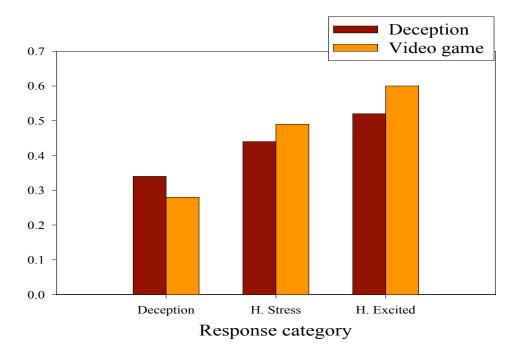



Two modes of questioning

- Scripted (n = 77; questioned according to set of prepared questions)
- Field-like (n = 93questioned as would do in actual interview)

Smuggler results

Participants action


Possible explanations for poor performance

- Vericator fails to detect microtremors
 - o Can indicate stress with reasonable accuracy
- Vericator detects microtremors but these are not diagnostic of deception
 - Microtremors may indicate increased levels of stress
- Can we get similar pattern of detecting deception with paradigm that induces stress but not deception?

Deception vs. other stressors

- Participants
 - $0 \quad N = 40$
 - o 20 in high-stress deception condition
 - o 20 in high-stress video game
- Video game
 - Identical to deception condition except
 - Participants play demanding video game
 - Game gets progressively more difficult
 - Bonus for higher scores
 - O Asked identical questions as individuals in the deception condition
 - Participant must keep playing game during questioning

Deception versus video game

Summary

- Test characteristics
 - o Relatively low sensitivity and specificity
- Sensitive to overall stress levels
 - o High stress gives greater detection rates than low
- Detection rates similar for actual deception and other stressors

Future directions

- Must determine vocal parameters that are diagnostic of deception
 - o Example: Factor analysis of known deceptive and nondeceptive statements
- Need standardized procedures for assessing devices

Acknowledgments

- DoDPI
 - Andrew Ryan, Stuart Senter, and Troy Brown
 Washington University
 Jennifer Dave
- - McKenzie Ballou
 - **IRB**

Published: 15 May 2006